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1. INTRODUCTION 

Filtering by morphological operations is particularly suited for removing clutter and noise 
objects which have been introduced into noiseless binary images containing shapes of interest. 
Morphological filtering is designed to exploit differences in the spatial nature (shape, size, orientation) 
of the objects (connected components) in the ideal noiseless images as compared to the noise/clutter 
objects. Since the typical noise models (union, intersection set difference, etc.) for binary images are 
not additive, the morphological processing is strongly nonlinear, optimal filtering results conventionally 
available for linear processing in the presence of additive noise are not directly applicable to 
morphological filtering of binary images. After morphological filtering for clutter reduction recognition 
can begin. 

In this paper we describe a morphological filtering analog to the classic Wiener filter, a 
preliminary account having been given in [1] and we finish our discussion with a sketch of the 
morphological recognition process. The discussion begins in Section 2 with a review of the Wiener filter 
and its extension to a Binary Wiener filter; in these the underlying model entails decomposing the signal 
and additive noise into spectral elements in terms of an orthogonal basis set. Classic Wiener optimal 
estimation weights the respective spectral elements in the noisy signal according to the expected values 
of signal and noise energy across the spectrum. Section 3 extracts the essence of the algebraic structure 
underlying the derivation of the Wiener filter, doing so in a way that retains the concepts of energy 
and spectral decomposition, but eliminates the assumptions of noise additivity, orthogonal bases, and 
even the concept of inner product. The stage is thus set for the subsequent morphological filtering 
results where those assumptions do not apply. Section 4 derives an optimal morphological filter for 
binary images composed of the union (not sum) of the signal and noise connected components. The 
spectral decomposition of signal and noise is in terms of an ordered basis of connected components 
where the ordering is based on the morphological opening operation. (Such a basis is, in a certain 
sense, a "nested" collection of sets.) Thus the underlying model is based upon that ordered basis 
(which provides prototypes of signal and noise objects scattered throughout the binary image) and 
upon a morphological spectrum derived from openings. Section 5 expands the results of Section 4 
beyond allowing signal and noise objects to be taken from a single ordered basis (e.g. an ordered set 
of discs). In Section 5, the collection of prototypes can include any number of coordinated ordered 
bases (e.g. an ordered set of discs, as well as an ordered set of squares, as well as several ordered sets 
of lines each at different orientations.) In Section 6, we give a sketch of the morphological recognition 
process for complex shapes. 

2. THE WIENER FILTER 

Regarding the discrete Wiener filter, let b1 , ... , bn be an orthonormal basis. The model for the 
ideal random signal I is that I= "2:~=! O"nbn where E[an] = 0, V[an] = o}., and E[aman] = 0, m f n. 
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The variances o}. are taken to be known. The model for the random noise g is that g = ~~=I f3nbn 
where E[/3n] = 0, V[Pn] = u;., and E[PmPn] = 0, m # n. Noise and signal are uncorrelated so that 
E[anPm] = 0. 

The observed noisy signal is f + g = ~~= 1 (an + Pn)bn. The Wiener filtering problem is 

to determine weights WJ, ... , WN to make the estimate 1 of/, 1 = ~~=! wn(an + Pn)bn minimize 
E[p(f, 1)], where p is a metric. In the case of Euclidean distance for the metric p, E[p(f, 1)] = 
E[ll!- 111 2

]. 

Now, 

And 

N N 

II/- 1112 =II L O"nbn- L Wn(O"n + Pn)bnll 2 

n=l n=l 

N 

= L [wn(O"n + Pn)- O"n]2 

n=l 

N 

E [11/- 111 2
] = L E[(wn(O"n + Pn)- O"n) 2

] 

n=l 

N 

= "'""' w2 (u2 + u2 ) _ 2w u2 + u2 L....t n fn 9n n fn ln 
n=l 

Hence, the minimizing weights are given by 

0"2 

w - '· 
n - u]. + ui. 

One can also define a binary Wiener filter, with weights restricted to 0 or 1. 
the minimizing weights, we need just examine 

2 2 2 2 2 { uj if Wn = 0 
wn(u/. + u9.)- 2wnuJ. + u/. = u:: if Wn = 1 

Hence, under the constraint that the Wn E {0, 1}, the minimizing weights are given by 

{ 
0 if u 2 < u 2 

Wn = fn 9n 
1 otherwise 

(1) 

(2) 

(3) 

To determine 

(4) 

(5) 

In this case the estimate 1 = ~nes(an + Pn)bn, where S = {nlwn = 1}. Thus the optimal binary 
Wiener filter retains that part of the spectrum where the expected signal energy exceeds the expected 
noise energy, and discards the rest. 

3. OPTIMAL FILTERING IN THE GENERALIZED CASE 

This section restates the binary Wiener filter results, retaining the classic algebraic structure 
under far less restrictive assumptions than those of Section 2. The new assumptions will in fact 
be consistent with the morphological filter we will develop in Section 4. Specifically we now relax 
the assumptions of additive noise, vector norms, inner products, and orthonormal bases, replacing 
them with tnore general assumptions on the nature of noise inclusion, distance, energy, and spectral 
decomposition, and the relationships between them. 

Let f be any binary image in a set B of binary images and 1/J be a mapping (a spectral 
decomposition) taking f into theN-tuple(/!, ... , IN); that is 1/J : B-+ BN. (In the case of the Wiener 
filter, theN-tuple(/!, .. . ,/N) is (a!h, ... ,aNbN). Here, we incorporate into each In both the scalar 
and the basis elements.) Let ,p- 1 be the inverse mapping re-assembling(/!, ... , IN) back into/; that 
is ,p- 1 : BN -+ B. The identity operator can be expressed as ,p,p-! and ,p- 1¢. For any two binary 
images f and g in B let there be defined a binary operation <> such that f <> g is also a binary 
image in B. When g is the noise, f <> g corresponds to the observed noisy binary image. We require 
that <> and 1/J satisfy the relationship 

(6) 
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Let. p be the function evaluating the closeness of one image to another. Hence p : B x B -+ 

(O,oo). The function p must satisfy p(f,h) = '£~= 1 p(fn,hn) where 1/;(1) = (!J, ... ,IN) and 
1/J(h) = (hJ, ... ,hN)· 

For any binary image g, we let # represent the operator which quantifies the energy in 
the binary image g; # : B -+ (0, oo ). The operator # must satisfy #g = 'L;~=I #gn, for spectral 
decomposition 1/J(g) = (g1 , ... ,gN)- Finally, there is a relationship between p and#: The distance 
between the binary image and the ideal image is just the energy in the noise image; p(! < > g, f) = #g. 

Let Wn E {0, 1}, n = 1, ... , N be binary weights and let the filtered binary image have a 
representation (wi(/J <> g!), ... , WN(!N <> 9N )) where 

(J, ) {In <> 9n if Wn = 1 
Wn n <> 9n = t/J if Wn = 0 (7) 

and ,P is the binary image satisfying I < > ,P '= f. The filtered binary image J itself can then be written 
as 

(8) 

In essence the effect of the filtering is obtained by nulling spectral content of the observed noisy binary 
image. 

The optimal filter parameters Wn are chosen to minimize 

E(p(}, !)] = E [~ p(}n,/n)] = ~ E(p(wn(fn <> 9n),/n)] 

= tE [{#9n !fwn = 1]. 
n=l #In IfWn = 0 

Hence, the best value for Wn is given by 

Wn = { 0 if E[#ln] < E[#gn] 
1 otherwise. 

(9) 

(10) 

Then the index set S corresponding to the spectral content that will be included in the optimal filter 
output can be defined by S = {niE[#In] ~ E[#gn]}. 

4. OPTIMAL BINARY MORPHOLOGICAL FILTER 

To apply the foregoing algebraic filtering paradigm to mathematical morphology, we need 
to define the ideal random image model, the random noise model, the relationship of the observed 
image to the ideal random image and random noise, the formulation of representation operator 1/J 
from morphological operators, the energy measure #, and the closeness measure p. We begin with 
the representation operator 1/;, which will be formulated relative to morphological opening, where the 
opening of binary image A by structuring element K is defined by 

A o /{ = UU<x : Kx ~A} (11) 

where subscripts having names like x or y designate a translation of the set subscripted and where we 
assume all images are compact subsets of k-dimensional Euclidean space RK. (See Serra (2], Haralick, 
Sternberg, and Zhuang (3], or Dougherty and Giardina (4,5] for the fundamental properties of the 
morphological opening.) 

The representation operator 1/J will be defined in a manner akin to the morphological 
granulometric pattern spectrum. To set up our definition for 1/J in a way which relates to the ideal 
random image and noise models, we note that the opening operator has the following property: If 
A= U{= 1 A;, where each A; is a connected component of A, and K is a connected structuring element, 
then 

I I 

AoK=(UA;)oK= U(A;oK). (12) 
i=l i=l 

This property, that the opening of a union of connected components is the union of the 
openings, will be essential throughout our development. It is this property which motivates the 
following definition: Two sets A and B are said to not interfere with one another if and only if X, 
a connected component of AU B, implies that X is a connected component of A or of B but not 
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both. It imJ;Ilediately follows that if A and B do not interfere with one another and K is a connected 
structuring element, then 

(AU B) oK = (Ao K) u (B o K). (13) 

The opening-spectrum operator !/! will be defined in terms of a set of openings. This set of 
openings will be based on the structuring elements in a naturally ordered morphological basis. We 
define a collection K of structuring elements to be an opening spectrum basis if and only if /{ E K 
implies /{ is connected and K, L E K implies /{ o L = /{ or K o L = ¢>. A opening-spectrum basis 
K = {K(1), ... , K(M)} is naturally ordered if and only if K(1) = {0} and 

K(i) o K(j) = { ~{(i) ~:::; ~ (14) 
'I' J > t. 

A simple example of an ordered opening-spectrum basis is a set of squares of increasing size, beginning 
with a square of one pixel. 

Now we can define the operator 1/J which produces a opening-spectrum with respect to 
a naturally ordered opening-spectrum basis K = {K(1), ... , K(M)}. 1/J is defined by 1/J(A) 
(A1, ... ,AM) where 

Am =AoK(m)-AoK(m+1) (15) 

form= 1, ... , M- 1, AM =A o K(M), and K(1) = {0}. Am is that part of A which is open un 
K(m) but not open under K(m + 1), except for AM which is A opened by K(M). It follows m this 
definition that for i ::j:; j, A; n Ai = ¢>. This happens because 

A; n Aj =[A o K(i)- A o I<(i + 1)) n [A o K(j)- A o K(j + 1)) 

=[A o K(i) n A o K(j)) n [A o K(i + 1) u A o K(j + 1)]" 

= [Ao K(max{i,j})) n [Ao K(min{i + 1,j + 1})) 

=¢>since max{i,j} 2: min{i + 1,j + 1} for any i =P j, 

Fori< M, 

A;nAM = [AoK(i) -AoK(i+ 1))nAoK(M) 

=([A o K(i) n [A o K(M))) n [A o K(i + 1)]" 

i,j<M 

=A o K(M) n [A o K(i + 1)]< since A o K(i) 2 A o K(M) 

= ¢> since A o K(i + 1) 2 A o K(M) 

(16) 

(17) 

It is easy to see that from the opening spectrum, (A1, ... , AM), the original shape A can be 
exactly reconstructed. Consider 

M 

U Am= [A o K(1)- A o K(2)) u ... u [A o K(M- 1)- A o I<(M)) U A o K(M) (18) 
m=l 

Since I<(i) o K(j) = K(i) fori 2: j,A o K(j) 2 A o K(i) fori 2: j. (19) 

Hence the sets A= A o K(1), A o I<(2), ... , A o K(M) are ordered in the sense that 

A= A o K(1) 2 A o I<(2) 2 ... 2 A o K(M) (20) 

From this it follows that for any m 2: 2, 

[A o K(m- 1)- A o K(m)) U A o K(m) =A o K(m- 1) (21) 

Now by working from the right end of the union representation, taking two terms at a time, the entire 
union is seen to collapse to A o K(1) =A. 

t/J- 1 can then be defined by ¢-1(A1, ... , AM)= U~=l Am. The existence of ¢-1 implies that 
the representation is unique in the sense that two different opening spectra must be associated with 
two different shapes and two different shapes must be associated with two different opening spectra. 
It implies, as well, that the representation is complete. 

Next we discuss the spatial random process generation mechanism which produces binary 
image realizations. A spatial random process producing a set A is a non-interfering spatial Poisson 
process with respect to an ordered opening-spectrum basis K if and only if: 

278 

• For some Z, a Poisson distributed random number (with Poisson density parameter AA), which 
is the total connected component count of a binary image realization A; 



• For. some multinomial distributed numbers Lt, ... , LM with L~=l Lm = Z (with respective 
multinomial probabilities p1 , ... , PM), which split the Z connected components into M subsets 
containing objects of the same type; 

• For some randomly chosen translations Xmj, m = 1, ... , M; j = 1, ... , Lm; 

• A= U~=t Uf,;;'1 K(m)x~;• where the translated structuring elements do not interfere, i.e., 

K(i)x;; nK(m)x~. = { ~<(i)x;; if i = m and j = n 
otherwise. 

From this definition of a non-interfering random process, it follows that 

( 

M L~ ) 
A o I<(.X) = mlJl jld I<(m)x~; o I<(.X) 

M L~ 

= U U [K(m)x~; o I<( .X)] 
m:lj=l 

M L~ 

= U U I<(m)x~; 
m:>.j=l 

Moreover, if 1/I(A) = (At, ... , AM), then 

L~ 

Am= U I<(m)x~; 
j:l 

(22) 

(23) 

(24) 

form= 1, ... , M. We interpret these results in the following manner: If A is opened by the .Xth 
basis structuring element, all components originating from "smaller" (lower-numbered) basis 
structuring elements are removed; the opening spectrum of A (with respect to the basis from 
which it was built) sorts A according to the index number of the underlying basis structuring 
elements, and leaves nothing out. 
We consider both the ideal random image and the noise image to be generated by non

interfering random spatial processes. The observed noisy image is the union of .the ideal image with a 
noise/clutter image. This motivates a definition of non-interfering spatial processes which here plays 
the role of the zero correlation between the coefficients of the image process and the coefficients of 
the noise process in the Wiener filter case. A random process generating realization D and a random 
process generating realization E are said to be non-interfering random processes if and only if D and 
E are always non-interfering sets for each realization. 

We can now define an observed noisy image. Let A be a realization of a non-interfering 
spatial process (with respect to an ordered opening-spectrum basis K) producing images of interest 
and let N be a realization of a non-interfering spatial process (with respect to the same K) producing 
noise/clutter. We suppose that these processes do not interfere with one another. The observed 
noisy realization is defined as AU N. Let ¢(A) = (At, ... ,AM),1/J(N) (Nt, ... ,NM), and 
1/I(AUN) = (Bt, ... ,BM)· Then 

Bm =(AU N) o I<(m)- (Au N) o I<(m + 1), 

form= 1, ... ,M -1, and 
BM = (AU N) o I<(M). 

Because the processes do not interfere with one another, 

Bm =[A o I<(m) uNo K(m)]- [A o I<(m + 1) uNo I<(m + 1)] 

=[A o I<(m)- A o I<(m + 1)] U [No I<(m)- No I<(m + 1)] 

=Am UNm 

and BM =Aoi<(m)UBoi<(m) 

=AMUNM 

Thus we have just seen that 

(25) 

(26) 

(27) 

(28) 
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The filtered image A will be based on selecting the most appropriate components from the 
opening-spectrum of AU N. Letting S be the set of components selected, we estimate A by A where 

(29) 
mES mES 

Thus by choosing the form of the estimation analogously to that of the binary Wiener filter, the 
estimation problem becomes one of choosing an appropriate index set S. 

To determine S, we must first state our error criterion. For any two sets A and A, we define 
the closeness (non-overlap) of A to A by p(A, A) = #[(A- A) U (A- A)] where# is the set counting 
measure (pixel count, area). Our error criterion is then 

Hence, 

E[p(A, A)]= E {#[(A- A) u (A- A)]}. 

To see how to choose S to minimize E {#[(A- A) U (A- A)]}, first note that 

M M 

A- A= U Am- U (Am u Nm) = U Am 
m=l mES 

M M 

A- A = U Am u Nm - U Am = U Nm. 
mES m=l mES 

p(A, A) = #[(A- A) u (A- A)] 

=#(A- A)+ #(A- A) 
M 

=# U Am+# U Nm 
m=l mES 
m~S 

M 

= L#Am+ L#Nm 
m=l mES 
m~S 

(30) 

(31) 

(32) 

The two summations above are respectively the area of the ideal image left out, plus the noise and 
clutter area left in. The individual terms decompose that area by spectral content. 

Now, since each spectral component is built of translates of the same basis structuring 
elements, and since non-interference implies mutual exclusivity, 

Lm 

#Am=# U I<(m):cm; 
j=l 

(33) 
Lm 

= L#J<(m):cm; = Lm#I<(m) 
i=l 

so that 
(34) 

where Pm is the multinomial probability for the ideal image process, AA is the Poisson density . 
parameter of the ideal image process, and A is the area of the image spatial domain. Likewise, 
E[#Nm] = #I<(m)qmANA, where qm is the multinomial probability for the noise process and AN is 
the Poisson density parameter of the noise process. 

To determine the index set S, we then have 

E {#[(A- A) u (A- A)]} = E [t
1 

{ =~= 
_ ~ {E[#Am] 
- ~1 E[#Nm] 

Hence, the best S is defined by 

S = {mJE[#Nm] < E[#Am]}, 
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m f: s] 
mES 

mf:.S 
mES 

(35) 

(36) 



or equivalently for the statistical assumptions made, 

S = {miqmAN < PmAA}· (37) 

A spectral component is retained according to the relative expectations of that component's "leave
out" of ideal image vs. "leave-in" of noise and clutter. 

Figure 1 illustrates the concept of the filter. A is the ideal binary image; B is the observed 
noisy image. There are four structuring elements K(1), K(2), K(3), and K(4) which constitute an 
ordered basis. The four component images are given by 

B1 = B o K(1)- B o I<(2) 

B2 = B o I<(2)- B o K(3) 

B3 = B o J<(3)- B o I<(4) 

B4 = B o I<(4) 

Notice that all the binary-one pixels in B1 are noise. So the index set S, which selects which 
components constitute the filtered image, will not contain the index 1. The component images B2 and 
B3 contain more ideal image than noise so indices 2 and 3 are in S. Finally, the component image B4 
has more noise than ideal image. Hence index 4 is not in S. The filtered image A is then defined by 
A= B2UB3. 

5. EXTENSION TO GENERALIZED (TAU-)OPENINGS 

The results we have just obtained can be extended to where the opening operation is changed 
to a generalized opening operation. Recall that in the previous section, each basic structuring element 
was just a set I<. In the generalized opening operation, each basic structuring element is a collection 
Q of sets. The generalized opening of an image I with Q is then defined by: 

I o Q = U I o L'. (38) 
L'EQ 

Regarding such generalized openings, Matheron [6] calls a filter W" a tau-opening if it satisfies 
four properties: it must be (1) anti-extensive, W"(A) ~A; (2) translation invariant, W"(A.,) = [.P(A)].,; 
(3) increasing, A ~ B implies W"(A) ~ W"(B); and (4) idempotent, .PIP = W". The basic Matheron 
representation for tau-openings is that W" is a tau-opening if and only if there exists a collection Q 
such that W" is defined by eq. (38). Moreover, Q is a base for lnv[W"], the invariant class of W"; that is, 
the invariants for W" are unions of translations of elements in Q. For an elementary opening A o I<, (I<) 
is the base. The Matheron representation is discussed by Dougherty and Giardina [4,5], the gray-scale 
exension is given in [5], and both Serra [7] and Ronse and Heijmans [8] give lattice extensions. 

The generalization is important because of the way it extends the underlying signal and noise 
spatial random process generation mechanism. For example, if the structuring elements were all line 
segments, the structuring element collection Q could consist of multiple orientation of line segments of 
the same length. The corresponding spatial random process would place non-interfering line segments 
at different orientations on the image. Or, the spatial random process could place non-interfering 
line segments, disks, or squares, on the image. For each size, the corresponding structuring element 
collection could be: line segments of the given size at a variety of orientations, a disk of the given size, 
and a squar.e of the given size. 

To see how the generalized opening can be used, we illustrate the case for which each 
structuring element collection contains exactly two structuring elements. Let K = { K(l), ... , I<(M)} 
and :T = {1(1), ... , J(M)} be naturally ordered opening bases. Define the collection Q by 
Q = {Q(1), ... ,Q(M)} where Q(m) = {K(m),J(m)},m = 1, ... ,M. To make the ordering of the 
collection K and the collection :T compatible, we require that 

I<(i) 0 J(j) = J(i) 0 I<(j) = </> 

for j > i. Q is called a generalized opening basis. 
Now, using the generalized opening operator, consider 

I<(i) o Q(j) = I<(i) o I<(j) u K(i) o J(j) 

- { I<(i) i?. j 
- </> otherwise 

(39) 

(40) 
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Figure 1 Figure 1 illustrates the filtering process. A is the ideal image; 
B is the observed noisy image. Using structuring elements K(l), K(2), 
K(3), and K(4) as the ordered basis produces component images Bl, 
B2, B3, and B4. Component images B2 and B3 have more ideal image 
than noise, so the filtered image A is B2 U B3. 



Likewise, 
J(i) o Q(j) = J(i) o K(j) u J(i) o J(j) 

- { J(i) i ~ j 
- ¢ otherwise 

Suppose that a realization A for a non-interfering process can be written as 

where the sets in the collection 

{K(m),~i, J(m)Y~i : i = 1, ... , L~,j = 1, ... , L~}~=l 

are naturally non-interfering. Then 

M Lf M Lj 

= U U [K(m),~i o Q(A)] U U U [J(m),~i o Q(A)j 
m=lj=l m=li=l 

M Lf M Lj 

= U U K(m),~i U U U J(m)y~i 
m=.l.j=l m=-"i=l 

Moreover, applying the spectrum definition of eq. (15) to the generalized opening Q yields 

Am= A o Q(m)- A o Q(m + 1) 

M Lf M Lj 

= U U K(n),.i U U U J(n)y.i 
n=mj=l n=mj=l 

M Lf M 

U U K(n),.i U U 
LJ 

J 

U J(n)y.i 
n=m+li=l n=m+li=l 

Lf Lj 

= U K(m),.i U U J(m)y.i 
i=l i=l 

( 41) 

(42) 

( 43) 

(44) 

(45) 

From this it is clear that the representation ~erator 'If; based on Q has an inverse and 
A= u;!;=l Am. Furthermore, A; u Aj =¢and #A= Lm=l #Am. This fulfills the required conditions 
described in Section 3. Furthermore, results for Q containing collections of pairs of structuring elements 
are immediately generalizable to collections having any number of structuring elements. 

To extend the optimal index set S given by eq. (28) to the situation where Q contains pairs, 
Q( m) = { K ( m), J ( m)}, we need only recognize that there are now four noninterferring processes 
to consider: (1) a signal process irJ.Volving {K(m)} with Poisson parameter ,\AK and multinomial 
probabilities PKm, (2) a signal process involving { J(m)} with Poisson parameter ,\AJ and multinomial 
probabilities PJm, (3) a noise process involving { K( m)} with Poisson parameter ,\NK and multinomial 
probabilities qKm, and (4) a noise process involving {J(m)} with Poisson parameter ,\NJ and 
multinomial probabilities Vm· Since eq. (35) still applies, eq. (45) applied to both signal and noise 
yields 

E[p(A, A)]= E A#K(m)[AAKPKm + ,\AJPim] + E A#K(m)[,\NKqKm + ,\NJqJm] (46) 
m~S mES 

Thus, the best S is defined by 

S = {m: ,\NKqKm + ,\NJqJm < ,\AKPKm + ,\AJPJm 

Extension to more than two structuring-element opening bases is straightforward. 

( 47) 
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6. RECOGNITION OF COMPLEX SHAPES 

A complex shape can be considered as a union of simpler shapes. So suppose that a complex 
shape E has pieces F1 , ... , FN. That is, E = U~=l Fn. Furthermore suppose that for some subset of 
pieces, say G1 , ••. , GM, G; is disconnected from Gj fori f:; j. In this case, we can work with the subset 

U~=l Gm of E and recognize it. 

The recognition of U~= 1 Gm of connected components G1, ... , G M where each Gm is some 
region in a component of the representation ¢(E) and is in a fixed relative position to each of the other 
G;'s introduces an additional degree of constraint which the recognition algorithm may use. Suppose 
that the noise is additive and there exists structuring elements K;j satisfying 

G; ~ Gj Ef) K;j if:; j 

Here the dilation can be thought of as expanding Gj just enough so that it is bigger than G; and then 
translating it so that the translation, which has been incorporated in K;j, just makes Gj Ef) K;j cover 
G;. 

If the observed G; is G; where G; = G; U N; it makes sense to consider reducing the detected 
candidate G; by the following iterative equation. 

c?=G; 
a:+ 1 = (Gj Ef) K;j) n Gl 

In this case, the iterative equations further reduce the candidate components. At the fixed point of 
the iteration, each G; belongs to a confguration of other regions which stand in the right relationship 
to each other. Collecting together the configuration can then be done by locating the centroids of each 
of the regions and grouping those which stand in the correct relative translations with respect to one 
another. 

7. CONCLUSION 

For the problem of filtering corrupted binary images of the form AU N, we have chosen an 
appropriate morphological opening spectral decomposition, as well as distance and energy measures 
resulting in an appropriate measure of estimation error. Based upon these choices (which are quite 
different from the analogous choices for the additive noise/linear filter problem, and which eliminate 
the requirement for orthogonality or an inner product space) we have derived optimal filtering results 
analogous to conventional Weiner filtering results based on image and noise energy contents in each 
spectral bin. 

The assumptions on the image and noise models in order for the results to be valid are 
presently fairly strong. The image and noise connected components are modeled as translated copies 
of objects from a single ordered opening basis set (Sections 4 and 6) or a collection of such basis sets 
(Sections 5 and 7). In addition there is a non-interference (non-overlap) condition so that all objects 
remain distinct and no objects are created that fail to arise directly from basis sets. 

These conditions guarantee sufficiency. However, they are actually stronger than need be. 
They were sufficient to guarantee that (AU B) o K =AU Band #(AU B)= #A+ #B. There are 
many instances in which (AU B) o K = AU B and A and B are not non-interfering sets. If A and 
B are not exclusive then #(AU B) $ #A+ #B. So if the sets overlap, the quantities we have been 
computing will be strict upper bounds. However, in this case, the overlapping can be regarded as a 
random process and instead of computing #(Au B) a composition of E[#(AUB)] = k(#A+ #B) for 
an appropriate 0 < k < 1 can be made. Therefore, the possibility of generalizing the results is quite 
strong. 

Finally, we have discussed a morphological relaxation procedure to aid in the recognition 
of a shape from some of its components which have been detected by the morphological opening 
representation. 
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